Protocole Libmol pour explorer la structure de la molécule d'ADN

Etude de la structure d'une molécule d'ADN humain :

Ouvrez un onglet Libmol sur un navigateur internet (CTRL + clic pour suivre le lien).

A gauche dans l'onglet "Fichiers", dans la ligne "Rechercher dans la librairie de molécules", recherchez "ADN" et sélectionnez "modèle moléculaire d'ADN".

En haut à droite dans le menu "Réglages" sélectionnez la couleur de fond noir.

A la souris :

- la molette permet de zoomer-dézoomer
- le clic gauche maintenu permet de faire pivoter la molécule dans l'espace
- le clic droit maintenu permet de déplacer la molécule sans la faire pivoter

A gauche dans l'onglet "Commandes" catégorie "Représenter", testez les différentes propositions (en bas à gauche s'affiche un texte explicatif de chaque mode de représentation) puis conservez "Boules et bâtonnets".

A gauche dans l'onglet "Commandes" catégorie "Colorer", testez les différentes propositions puis :

- en "Chaînes", identifiez le nombre de chaînes dans la molécule,
- en "Atomes", listez les éléments chimiques présents dans la molécule,
- en "Résidus", listez les résidus constitutifs présents dans la molécule.

En haut à droite dans le menu "Réglages" développez le sous-menu "liaisons hydrogènes" avec la flèche et cochez "liaison hydrogène"

😑 Liaisons hydrogènes 🗸
🗹 Liaison hydrogène
Liaison hydrogène de la structure secondaire
 Liaison hydrogène entre molécules d'eau
Liaison hydrogène faible

Il vous sera nécessaire de préciser entre quels "résidus" s'établissent ces "liaisons hydrogènes".

Conservez cet onglet une fois votre exploration et votre description terminées.

Etude de la structure d'une molécule d'ADN bactérien (Escherichia coli)

Ouvrez un nouvel onglet Libmol sur un navigateur internet (CTRL + clic pour suivre le lien).

A gauche dans l'onglet "Fichiers", dans la ligne "Rechercher dans la Protein Data Bank", recherchez le fichier "1bna".

Faites le même travail qu'avec la première molécule puis comparez les deux molécules.